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Abstract

On the space L, of loops in the group of Hamiltonian symplectomorphisms of a symplectic
quantizable manifold, we define a closed Z-valued 1-formΩ . IfΩ vanishes, the prequantization map
can be extended to a group representation. On L one can define an action integral as an R/Z-valued
function, and the cohomology class [Ω] is the obstruction to the lifting of that action integral to an
R-valued function. The form Ω also defines a natural grading on π1(L). © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In the process of quantization of a symplectic manifold (M,ω) it is necessary to fix a
polarization I , then the corresponding quantization QI is the space of the sections of a
prequantum bundle L, which are parallel along the leaves of the polarization I [17]. The
identification of the QI obtained by fixing different polarizations is one of the goals of the
geometric quantization, but “the theory is far from achieving this goal” [3, p. 267]. This
issue has been treated in several particular cases: the identification of the quantizations of
the moduli space of flat connections on a closed surface has been studied in [1,5]; the case
when M is a torus has been treated in [13]. The problems involved in an identification of
the spacesQI were analyzed in [14], when the polarizations considered are of type Kähler.
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Here, we consider a similar situation. If {ψt |t ∈ [0, 1]} is a Hamiltonian isotopy of M
[8] and F a foliation onM , the action of ψt produces a family Ft of foliations. We have the
spacesQFt of sections of L which are “polarized” with respect to Ft , i.e., sections parallel
along the leaves of Ft . We shall construct isomorphisms τ ∈ QF → τt ∈ QFt , which
permit us to “transport” the vectors inQF to the spacesQFt in a continuous way. In general
this transport has non-vanishing “curvature”, i.e., it depends on the isotopy which joins a
given symplectomorphism with id.

In the prequantization process of (M,ω) one assigns to each function f onM an operator
Pf [11, pp. 57–59], which acts on the spaceΓ (L) of sections ofL. The mapP is a represen-
tation of VectH (M), the algebra of Hamiltonian vector fields onM . There are obstructions
to extend this representation to a representation of Ham(M), the group of Hamiltonian
symplectomorphisms ofM [8]. We analyze the relation between these obstructions and the
curvature of the aforementioned transport.

If the Hamiltonian isotopy ψt is a loop in the group Ham(M) andN is a Lagrangian leaf
of the foliation F , then ψt(N) is a loop of submanifolds ofM and the corresponding Berry
phase is defined [16]. We prove the existence of a number κ(ψ) ∈ U(1), which depends
only on the loop ψ , and that relates any section ρ with ρ1, the section resulting of the
transport of ρ, by the formula ρ1 = κ(ψ)ρ. So κ(ψ) is the “holonomy” of the transport
along ψ . It turns out that the holonomy of our transport is essentially the Berry phase of
the loop ψt(N). Using the map κ we construct on L, the space of loops in Ham(M) based
at id, a closed 1-form Ω . The vanishing of Ω is equivalent to the invariance of the Berry
phase under deformations of the loop ψ . We will prove that there is a well-defined an
R/Z-valued action integral on L. The exactness ofΩ is equivalent to the existence of a lift
of the action integral to an R-valued map. The integral of the form Ω along a loop φs in
L is in fact the winding number of the map s ∈ S1 �→ κ(φs) ∈ U(1), so Ω is Z-valued.
This property permits to define a grading on π2(Ham(M)) compatible with the group
structure.

In Section 2 is introduced the transport of vectors τ ∈ QF to vectors τt ∈ QFt . Such a
transport is determined by the differential equation which it generates, i.e.,

dτt
dt

= ζ(Ft , τt ),

where ζ is a section of L. The condition τt ∈ QFt gives rise to an equation for ζ . This
equation does not determine uniquely ζ , however it is possible to choose a natural so-
lution for ζ using the time-dependent Hamiltonian ft which generates the isotopy. If the
isotopy is closed, i.e., ψ1 = id, given a leaf N of F , it is easy to show the existence
of a constant κ such that τ1|N = κτ|N for all τ ∈ QF . So one can define the holon-
omy for the transport of such sections τ|N . In this Section we also study the relation be-
tween this holonomy and the Berry phase of the loop ψt(N) of Lagrangian submanifolds
of M .

Section 3 is concerned with the properties of κ(ψ). First we prove its existence
and determine its expression in terms of the Hamiltonian function and the symplectic
form. Given {ψt |t ∈ [0, 1]} a loop in Ham(M), if q is a point of M , then the gen-
eral action integral around the closed curve ψt(q) is

∫
S
ω, where S is any 2-submanifold

bounded by the curve ψt(q). However, for these particular curves one can also define the
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action integral

A(ψ(q)) =
∫
S

ω −
∫ 1

0
ft (ψt (q)) dt. (1.1)

A(ψ(q)) is well-defined considered as an element of R/Z. Using results of Section 2 about
the transport of polarized sections we will prove that A(ψ(q)) is independent of the point
q ∈ M and that κ(ψ) = exp(2π iA(ψ)).

In [15] Weinstein defined a representation A of π1(Sym(M)) as follows. A(ψ) is the
mean value over q of the general action integrals around the curves ψt(q). When ψt is
a 1-parameter subgroup generated by a Hamiltonian function f , A and κ are related by
κ(ψ) = exp(2π iA(ψ)), assumed that the Hamiltonian function f is normalized so that∫
fωn = 0. The domain of the map κ is less general than the domain of A, however

the restriction to the Hamiltonian symplectomorphisms allows us to introduce the second
summand in (1.1), so we obtain an invariant without averaging on M , i.e., in contrast with
A(ψ) the value κ(ψ) can be calculated pointwise. κ is not invariant under homotopies; this
fact has an interesting meaning. One can define a 1-form on L as follows. Given a curve
ψs in L, and denoting by Z the vector field defined by this curve, the action of the 1-form
Ω on Z is given by

Ω(Z) = − 1

2π i

d

ds
(log(κ(ψs)).

Hence, the vanishing ofΩ is equivalent to the invariance of κ(ψ) with respect to deforma-
tions of the isotopy ψ . The property Ω = 0 is also a sufficient condition for P extends to
a representation of H̃am(M), the universal cover of Ham(M).

In Section 4, we prove that Ω is a closed 1-form that defines an element of H 1(L,Z).
We will also find a simple interpretation of the cohomology class ofΩ; it is the obstruction
for the lifting ofA to an R-valued map. The identification of π1(L)with π2(Ham(M))will
allow us to define a grading on the group π2(Ham(M)) by means of the form Ω .

In Section 5, we consider as symplectic manifold a coadjoint orbit of the group SU(2).
There are orbits O diffeomorphic to S2 and for these manifolds it is easy to determine the
value of κ on the loops which are 1-parameter subgroups in Ham(O). With this example
we check the general properties of κ stated in Section 3.

2. Loops of submanifolds and the Berry phase

Let M be a connected, compact, symplectic C∞ manifold of dimension 2n, with sym-
plectic form ω. Let us suppose that (M,ω) is quantizable, in other words, we assume that
ω defines a cohomology class in H 2(M,R) which belongs to the image of H 2(M,Z) in
H 2(M,R) [17, p. 158]. Then there exists a smooth Hermitian line bundle on M whose
first Chern class is [ω], and on this bundle is defined a connection D compatible with the
Hermitian structure and whose curvature is −2π iω. The bundle and the connection are
not uniquely determined by ω. The family of all possible pairs (line bundle, connection)
can be labelled by the elements of H 1(M,U(1)) [17, p. 161]. From now on we suppose
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that a “prequantum bundle” L and a connection D have been fixed, unless it is otherwise
indicated.

Let F be a foliation on M . If τ is a C∞ section of L such that DAτ = 0, for all A ∈ F ,
then τ is called anF -polarized section, and the space ofF -polarized sections ofL is denoted
by QF .

Let {ψt |t ∈ [0, 1]} be the Hamiltonian isotopy in M generated by the time-dependent
Hamiltonian function ft , i.e.,

dψt
dt

= Xt ◦ ψt , ιXt ω = −dft , ψ0 = id.

Then, for each, t we have a distribution Ft := (ψt )∗(F ). Moreover, if N is an integral
submanifold of F then Nt := ψt(N) is an integral submanifold of Ft . The family Nt is an
isodrastic deformation of N [16].

Given τ an F -polarized section ofL, we want to define a continuous family τt of sections
of L such that τ0 = τ and τt is Ft -polarized for all t . The continuity condition means that
there is a section ζ of L such that

τt+s = τt + sζ(τt )+ O(s2), (2.1)

where O(s2) is relative to the uniform C1-norm in the space Γ (M,L) of C∞ sections of
L. We will see the restrictions on ζ involved by the continuity condition (2.1), but first of
all we start with a previous result.

Given the isotopy ψt , each section ρ of L determines a family ρt of sections by the
equation

dρt

dt
= −DXt ρt − 2π iftρt , ρ0 = ρ. (2.2)

Proposition 1. LetA be a vector field onM . If the family ρt of sections of L satisfies (2.2),
then DAρ = 0 implies DAt ρt = 0 for At = (ψt )∗(A).

Proof. For a fixed t one has(
dψt ′(q)

dt ′

)∣∣∣∣
t ′=t

= Xt(ψt (q)).

If we put t ′ = t + s and φs := ψt+s ◦ ψ−1
t , then(

dφs(p)

ds

)∣∣∣∣
s=0

= Xt(p). (2.3)

As {φs} satisfies (2.3), then for the vector field A′
s = (φs)∗(At ), we have

A′
s = At − s[Xt,At ] + O(s2). (2.4)

Since At+s = A′
s one has

Ȧt :=
(

dAt ′

dt ′

)∣∣∣∣
t ′=t

=
(

dA′
s

ds

)∣∣∣∣
s=0

= −[Xt,At ]. (2.5)
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On the other hand

d

dt
(DAt ρt ) = DȦt ρt +DAt (−DXt ρt − 2π iftρt ). (2.6)

As the curvature of D is −2π iω

−DAtDXt ρt −D[Xt ,At ]ρt = −2π iω(Xt , At )ρt −DXtDAt ρt . (2.7)

Since ιXt ω = −dft , by (2.5) from (2.6) and (2.7) it follows

d

dt
(DAt ρt ) = −DXt (DAt ρt )− 2π iftDAt ρt . (2.8)

This is a first-order differential equation for the section ξ(t) := DAt ρt ; if ξ(0) = DAρ is
zero, then DAt ρt = 0 for every t by the uniqueness of solutions. �

Given ρ ∈ Γ (L), the family {ρt } which satisfies Eq. (2.2) defines a “transport” of ρ,
“along the isotopy” ψ = {ψt }, with the property that ρt ∈ QFt if ρ ∈ QF . The time-1
section ρ1 will be denoted by Tψ(ρ).

By Proposition 1 as section ζ in (2.1) can be taken

ζ(τt ) = −DXt τt − 2π iftτt . (2.9)

In general this is not the unique possibility for ζ . In fact if A is a vector field with Ap ∈
F(p) ⊂ TpM , using (2.4) and (2.1) one has

DA′
s
τt+s = DAt τt + s(DAt ζ −D[Xt ,At ]τt )+ O(s2).

As A′
s = (ψt+s)∗(A) ∈ Ft+s , the conditions DA′

s
τs+t = 0, and DAt τt = 0 imply

DAt ζ = D[Xt ,At ]τt for every At ∈ Ft . (2.10)

This is the equation for ζ , and it is straightforward to check that the ζ defined in (2.9)
satisfies (2.10).

The solution (2.9) and (2.10) will be called the “natural” solution and the transport defined
by (2.2) the “natural” transport.

Let {ψt |t ∈ [0, 1]} and {ψ̃t |t ∈ [0, 1]} be two isotopies with ψ1 = ψ̃1. We have Tψ(ρ)
and Tψ̃ (ρ), the sections resulting of the transport of ρ along both these isotopies. In general
Tψ(ρ) and Tψ̃ (ρ) will not be equal, i.e., the natural transport is not flat. In Section 3, we
will analyze the corresponding “curvature”.

The operator −DXt − 2π ift can be considered from another point of view. One can
associate to each C∞ function f onM a linear operator Pf on the space Γ (L), defined by

Pf (σ ) = −DXf σ − 2π if σ,

where Xf is the Hamiltonian vector field determined by f . It is easy to check P{f,g} =
Pf ◦Pg−Pg ◦Pf =: [Pf ,Pg], where the Poisson bracket {f, g} is defined as ω(Xg,Xf ).
So P is a representation of the Lie algebra C∞(M), the prequantization representation
[11]. On the other hand, in the algebra of linear operators on Γ (L) one can consider the
ideal C consisting of the operators multiplication by a constant, this allows us to define a
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representation of the algebra Lie(Ham(M)) in the algebra End(Γ (L))/C. It is reasonable
to conjecture the existence of obstructions to extend the above representation to a projective
representation

Ham(M) → PL(Γ (L))

of the group Ham(M). In Section 3, we will relate these obstructions with the curvature of
the natural transport.

2.1. Relation with the Berry phase

The connection on the C
×-principal bundle L× = L − {zerosection}, associated to the

prequantum bundle L, will be denoted by α. Given c ∈ C, the vertical vector field on L×
generated by c will be denoted by Wc, i.e., Wc(q) is the vector defined by the curve in L×
given by q · e2π ict.

Henceforth in this section, we assume that F is a Lagrangian foliation. Given τ ∈ QF ,
as τ is parallel along the leaves of the distribution F , if N is a leaf of F and if τ|N �= 0,
then τ(p) �= 0 for all p ∈ N . So τ(N) is a Planckian submanifold [12] of L× over N .

The proof of the following Lemma is straightforward.

Lemma 2. IfX ∈ TmN and τ ∈ QF , the vector τ∗(X) ∈ TqL×, where q = τ(m), satisfies
τ∗(X) = H(X)(q)+ (DXτ)(m), with H(X)(q) the horizontal lift of X at the point q.

Given a Hamiltonian isotopy ψt and τ ∈ QF , let τt be the family generated by the
transport of τ along ψt . If p ∈ N one can consider in L× the following curve:

t → τt (ψt (p)).

Proposition 3. The tangent vector defined by {τt (ψt (p))}t at q = τu(ψu(p)) is

H(Xu)(q)+W−fu(π(q))(q).

Proof. For t in a small neighborhood of u, as

dτt
dt

= −2π iftτt −DXt τt ,

one has

τt (ψt (p))= τu(ψt (p))− (t − u)(2π ifu(ψt (p))τu(ψt (p))

+(DXuτu)(ψt (p)))+ O((t − u)2).

This curve defines at t = u the following vector of TqL×

(τu)∗(Xu(s))− (2π ifu(s)τu(s)+ (DXuτu)(s)), (2.11)

where s := ψu(p). As τu(s) = q by Lemma 2 (τu)∗(Xu(s)) = H(Xu(s))(q)+(DXuτu)(s).
So the expression (2.11) is equal to

H(Xu(π(q)))(q)−Wfu(π(q))(q).

In short, the tangent vector at q defined by the curve considered is H(Xu)+W−fu . �
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We will use the following simple Lemma.

Lemma 4. If N is a connected submanifold of M and σ and ρ are sections of L parallel
along N , where ρ non-identically zero on N , then σ|N = kρ|N , with k constant.

Proof. As ρ is parallel alongN , ρ(x) �= 0 for all x ∈ N , so there is a function h onN with
σ|N = hρ|N . The relation

DA(σ|N) = A(h)ρ|N + hDA(ρ|N)

for every A ∈ TN, implies that h is constant on N . �

Given τ ∈ QF , and ψt a Hamiltonian closed isotopy, i.e., such that ψ1 = id, then Tψ(τ)
is also F -polarized. If N is a leaf of F and τ|N �= 0 by Lemma 4

Tψ(τ)|N = κτ|N, (2.12)

where κ is a constant. From linearity of the transport and Lemma 4 it follows that κ is
independent of the section τ . Hence κ can be considered as the holonomy of the natural
transport, along the closed isotopyψt , of F -polarized sections ofL|N . In Section 3, we will
prove the existence of holonomy for the transport of arbitrary sections of L.

Now we recall some results of Weinstein about the Berry phase (for details see [16,
p. 142]). If {Nt }t is a loop of Lagrangian submanifolds generated by the closed isotopy
ψt . Let εt be a smooth density on Nt such that

∫
Nt
ft εt = 0. Let {rt } be the family of

isomorphisms of (L×
|N, α) to (L×

|Nt , α) determined by {ft }, i.e., the isomorphisms generated
by the vector fields

H(Xt)+W−ft , (2.13)

where H(Xt) is the horizontal lift of Xt . The submanifold r1(τ (N)) “differs” from τ(N)

by and element θ ∈ U(1), i.e.,

r1(τ (N)) = θτ(N). (2.14)

If we denote by hol the holonomy onN defined by de-connection α, hol : π1(N) → U(1),
then the Berry phase of the family (Nt , εt ) of weighted submanifolds is the class of θ in the
quotient U(1)/(Im(hol)). Up to here the results of Weinstein.

Theorem 5. If ψt is a closed Hamiltonian isotopy and N a connected leaf of the La-
grangian foliation F , then the Berry phase of (Nt , εt ), with Nt = ψt(N), is the class in
U(1)/(Im(hol)) of the holonomy of the natural transport along ψt of F -polarized sections
of L|N .

Proof. Given p ∈ N , by Proposition 3 and (2.13) the curves in L×{τt (ψt (p)}t and
{rt (τ (p))}t define the same vector field. As they take the same value for t = 0, it turns out that
rt (τ (p)) = τt (ψt (p)) for all p ∈ N , hence the above complex θ in (2.14) is determined by

τ1(p) = θτ(p). (2.15)

From (2.12) and (2.15) we conclude θ = κ . �
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As we said the Berry phase of a loop of Lagrangian submanifolds was introduced in [16],
now we shall relate the holonomy of the natural transport with Berry’s phase such as it is
defined in quantum mechanics [10].

Let ft be a time-dependent Hamiltonian for a physical system with f0 = f1. We de-
note by f̂t the corresponding quantum operators. We assume that the lowest eigenvalue
E(t) for f̂t is non-degenerate, and it is isolated from the rest of the spectrum of f̂t . For
simplicity we suppose that E(t) = 0. Let ϕ0 be a unit eigenvector for E(0). The state
ϕ0 will change with t according to time-dependent Schrödinger equation i(∂ϕt/∂t) =
f̂t (ϕt ). The adiabatic theorem asserts that ϕt will be also an eigenvector of the lowest en-
ergy of f̂t , assumed that the adiabatic approximation is valid [2,9]. Since f0 = f1, ϕ1
will be equal to ϕ0 except for a phase factor, ϕ1 = eiγ ϕ0, and eiγ is the Berry phase
[10].

In the frame of geometric quantization, the space Q of states is the set of sections of the
prequantum bundleLwhich are covariantly constant along the leaves of a fixed Lagrangian
polarization I . Let {ψt }t∈[0,1] be the closed isotopy generated by ft , and we denote by
Qt the space of sections polarized with respect to the distribution ψt(I ). The family {ψt }
determines a set {rt } of automorphisms of the bundle (L×, α), where rt covers ψt . The
transformations rt are determined by the vector fieldsH(Xt)+W−ft (see also [11, Chapter
3]). If τ 8 : L× → C denotes the equivariant map determined by the section τ of L, the
action of rt can be expressed as (rt (τ ))8 = τ 8 ◦ r−1

t , i.e., rt acts by pulling back by r−1
t .

On the other hand, the temporal evolution of the state τ ∈ Q is τt = rt (τ ) ∈ Qt (see [17,
p. 201]). If the adiabatic approximation holds, τt will be a unit lowest eigenvector of f̂t ,
assumed that τ is a unit lowest eigenvector of f̂0. As f̂0 = f̂1, then τ1|N = eiγ τ|N , where
N is any leaf of the polarization I = I1. It follows from (2.12) that eiγ is just the holonomy
of the natural transport.

3. The holonomy of the natural transport

We will prove that it makes sense to define the holonomy of the natural transport of
arbitrary sections of L. We start with ψ = {ψt |t ∈ [0, 1]} a closed Hamiltonian isotopy,
generated by the time-dependent Hamiltonian function ft , i.e.,ψ is a loop at id in the group
Ham(M). So we must consider the corresponding Eq. (2.2) and study its solution. Let µ be
a local frame for L, defined on R ⊂ M , and β the connection form in this frame. There is
a time-dependent function g(t, .) such that

ρt (p) = g(t, p)µ(p), t ∈ [0, 1], p ∈ R. (3.1)

Hence (2.2) can be written

∂

∂t
g(t, .)= −Xt(g(t, .))− β(Xt )g(t, .)− 2π iftg(t, .),

g(0, p)= p for all p ∈ R. (3.2)

Fix a point q ∈ M , we put σ(t) := ψt(q). Assumed that the closed curve σ is contained
in R, Eq. (3.2) on the points of this curve is
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∂g

∂t
(t, σ (t))+Xt(σ (t))(g(t, .))

= −βσ(t)(Xt )g(t, σ (t))− 2π ift (σ (t))g(t, σ (t)). (3.3)

The second summand on the left-hand side is the action of the vector Xt(σ (t)) on the
function g(t, .) : M → R. If we consider the curve σ̂ : [0, 1] → R × M , defined by
σ̂ (t) = (t, σ (t)) and we put ĝ(t) := g(σ̂ (t)), Eq. (3.3) can be written

dĝ

dt
= −βσ(t)(Xt )ĝ(t)− 2π ift (σ (t))ĝ(t). (3.4)

Hence

ĝ(t) = g(0, q) exp

(∫ t

0
(−βσ(t ′)(Xt ′)− 2π ift ′(σ (t

′))) dt ′
)
.

As the closed curve σ is nullhomologous [8, p. 334], let S be any oriented 2-submanifold
bounded by the closed curve σ , then∫ 1

0
βσ(t)(Xt ) dt =

∫
S

dβ.

As the curvature of L is −2π iω, we have

ĝ(1) = g(0, q) exp

(
2π i

∫
S

ω − 2π i
∫ 1

0
ft (ψt (q)) dt

)
. (3.5)

Given the loopψ in Ham(M), the Hamiltonian vector fieldsXt determine the Hamiltonian
ft up to an additive constant. In certain cases it is possible to fix this Hamiltonian function
in a natural way, for instance when Xt is an invariant vector field on a coadjoint orbit. In a
general case ft can be fixed by imposing the condition that ft has zero mean with respect
to the canonical measure on M induced by ω; henceforth we assume that ft satisfies this
normalization condition.

For p point in M one defines

κp(ψ) := exp

(
2π i

∫
S

ω − 2π i
∫ 1

0
ft (ψt (p)) dt

)
, (3.6)

where S is any surface bounded by the closed curve ψt(p) in M .
Given the closed isotopy ψ , one can define the action integral [8,15] A(ψ)(p) around

the curve ψt(p) as the element of R/Z determined by (2π i)−1 times the exponent of (3.6).
Hence κp(ψ) = exp(2π iA(ψ)(p)).

If the Hamiltonian function is independent of t (i.e., the loop ψ is 1-parameter subgroup
in Ham(M)), then it is constant along ψt(p). Consequently the second integral in (3.6) is
equal to f (p).

From (3.1) it follows ρ1(q) = κq(ψ)ρ(q). And by choosing appropriate local frames,
one can prove for any ρ ∈ Γ (L)

ρ1(p) = κp(ψ)ρ(p) for any p ∈ M. (3.7)
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To study the function κ(ψ) : M → U(1) we will use properties of the sections of L
polarized with respect to certain foliations. There may be topological obstructions to the
existence of such foliations, however we will prove some properties of that function using
the existence of families of vector fields which define foliations in parts of M .

Let B := {B1, . . . , Bm} be a set of vector fields on M which define an m-dimensional
foliation on M − K , where K is a subset of M . This foliation will be denoted also by B.
We put

Bt = {Bj (t) := (ψt )∗(Bj )}j=1,... ,m,

and this set defines a foliation onM−ψt(K). Moreover ifN is a leaf ofB, thenNt = ψt(N)

is a leaf of Bt . On the other hand, according to Proposition 1, if τ is a section of L which is
B-polarized, i.e., such that DBj τ = 0, j = 1, . . . , m, then the section τt solution to (2.2),
is Bt -polarized.

LetN ⊂ M−K be a connected integral submanifold ofB. Given τ aB-polarized section
of L|N with τ non-identically zero on N , then τ1(p) = κp(ψ)τ(p) for p ∈ N . As τ1 and
τ are B-polarized by Lemma 4 one deduces that κp(ψ) is independent of the point p ∈ N .
The above results can be summarized in the following.

Proposition 6. Let (M,ω) be a compact, quantizable manifold, and ψ a loop in Ham(M)
at id. If p, q are points which belong to a connected integral submanifoldN of the foliation
onM −K defined by B, then κq(ψ) = κp(ψ), provided that there is a B-polarized section
of L non-zero on N .

Corollary 7. IfNi(i = 1, 2) is a connected integral submanifold ofBi , and τ i aBi-polarized
section of L|Ni with τ i �= 0. Then κq1 = κq2 , if qi ∈ Ni and N1 ∩N2 �= ∅.

Proof. If p ∈ N1 ∩N2, then for any loop ψ one has κq1(ψ) = κp(ψ) = κq2(ψ). �

On the other hand, if N is a simply connected integral submanifold of an isotropic
foliation B, as ω|TN = 0, the parallel transport determined by the connection of L allows us
to define a non-zero section ρ of L|N parallel along N . This fact permits other formulation
of Proposition 6 without assuming the existence of the non-zero polarized section.

Proposition 8. Let us suppose that (M,ω) is a compact, quantizable manifold, and that p
and q are two points which belong to a connected integral submanifold N of the isotropic
foliation B, if N can be written as a finite union of open simply connected subsets, then
κp = κq .

Proof. It is a consequence of the preceding remark and Corollary 7. �

Corollary 7 admits also a similar version without supposing the existence of τ i , if we
assume that Ni can be expressed as a finite union of simply connected open subsets. So,
we have the following proposition.

Proposition 9. Assumed that (M,ω) is a compact and quantizable manifold. Let Bi (i =
1, 2) be two sets of vector fields which define isotropic foliations on M − Ki , and Ni
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a connected integral submanifold of Bi , if Ni can be written as a finite union of simply
connected open subsets and N1 ∩N2 �= ∅, then κq1 = κq2 , for qi ∈ Ni .

Let Y be a transversal vector field on M , i.e., Y is a section of TM which is transversal
to the zero section of TM. Then, the Euler class e(M) ∈ H 2n(M) of M is Poincaré dual
of the zero locus of Y ; so this zero locus is a finite set K of points of M . And from the
transversality theory we conclude that this property is also valid for any “generic” vector
field. Each point of M − K belongs to a non-constant integral curve of Y . If p and q are
two arbitrary points inM one can choose generic vector fields Y1, . . . , Ym onM such that
p and q can be joined by a path which is the juxtaposition of curves, each of which is a
non-constant integral curve of some Yj . As the curves are isotropic submanifolds of M by
Proposition 9, κp = κq .

If ξ and ψ are two loops in Ham(M) based at id we can define ξ · ψ as the loop given
by the usual product of paths, it is immediate to check that κ(ξ · ψ) = κ(ξ)κ(ψ).

By (3.7) and the foregoing reasoning, we can state the following theorem.

Theorem 10. If (M,ω) is compact and quantizable, the correspondence

κ : {Loops in Ham(M) based at id} → U(1)

defined by

κ(ψ) = exp

(
2π i

∫
S

ω − 2π i
∫ 1

0
ft (ψt (q)) dt

)
,

q being an arbitrary point ofM and S any surface bounded by the closed curve {ψt(q)}, is
a well-defined map which satisfies κ(ξ · ψ) = κ(ξ)κ(ψ). Moreover

Tψρ = κ(ψ)ρ (3.8)

for any section ρ of the prequantum bundle L.

By (3.8) it makes sense to call κ(ψ) the holonomy of the natural transport along the
loop ψ .

Corollary 11. The action integral A(ψ)(p) is independent of p.

Corollary 12. Let f be a Hamiltonian function such that it defines a 1-parameter loop
{ψt |t ∈ [0, 1]}of symplectomorphisms; ifp is critical point off , thenκ(ψ) = exp(−2π if (p)).
If p and q are critical points of f then f (p) = f (q)(mod Z).

Proof. As ψt(p) = p for all t , the corollary is a consequence of (3.6). �

This relation among the critical values of f has been proved in [15] using the invariant A
mentioned in Section 1.

The relation (3.8) and Theorem 5 imply the following corollary.
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Corollary 13. Let {Nt := ψt(N)}, with N a connected, simply connected Lagrangian
submanifold of M and ψ = {ψt } a loop in Ham(M), then the Berry phase of the family
(Nt , εt ) of weighted submanifolds is κ(ψ).

Next we will study the behavior of κ(ψ) under C1-deformations of ψ . Let ψ = {ψt |t ∈
[0, 1]} be a loop in Ham(M) with ψ0 = ψ1 = id.We consider the derivative of κ(ψs) with
respect to the parameter s in a deformationψs ofψ , i.e.,ψs = {ψst |t ∈ [0, 1]} is an isotopy
with ψs0 = ψs1 = id generated by the time-dependent Hamiltonian f st ; furthermore we
assume that ψ0 = ψ . By {Xst }t is denoted the family of Hamiltonian vector fields defined
by {f st }t .

For q ∈ M we put σ s(t) := ψst (q), so {σ s(t)|t ∈ [0, 1]} is a closed curve and then

κ(ψs) = exp

(
2π i

∫
Ss
ω − 2π i

∫ 1

0
f st (σ

s(t))

)
=: exp(2π i∆(s)),

where Ss is a surface bounded by the curve σ s . We set

Xt := X0
t , ft := f 0

t , σ (t) = σ 0(t).

The variation of σ s(t) with s permits to define the vector fields Yt , i.e.,

Yt (σ
s(t)) := ∂

∂s
σ s(t). (3.9)

For an “infinitesimal” s the curves σ l , with l ∈ [0, s] determine the “lateral surface” J of
one “wedge” (see Fig. 1) whose base and cover are the surfaces S and Ss , respectively.
The ordered pairs of vectors (Xt (σ (t)), Yt (σ (t))) fix an orientation on J , which in turn
determines an orientation on the closed surface T = S ∪ J ∪ Ss . If we assume that S and
Ss are oriented by means of the orientations of curves σ and σ s , from the fixed orientation
on T it follows T = J − S + Ss .

As ω satisfies the integrality condition

−
∫
S

ω +
∫
Ss
ω = −

∫
J

ω (modulo Z). (3.10)

Fig. 1. Surface determined by the curves σ 1.
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Moreover∫
J

ω = s

∫ 1

0
ω(Xt(σ (t)), Yt (σ (t))) dt + O(s2). (3.11)

On the other hand, for a given t ∈ [0, 1](
d

ds
f st (σ

s(t))

)∣∣∣∣
s=0

=
(
∂

∂s
f st (σ (t))

)∣∣∣∣
s=0

+ Yt (σ (t))(ft ). (3.12)

We set

ḟt (p) :=
(
∂

∂s
f st (p)

)∣∣∣∣
s=0

.

As ιXt ω = −dft , from (3.12) it follows:

d

ds

∣∣∣∣
s=0

∫ 1

0
f st (σ

s(t)) dt =
∫ 1

0
ḟt (σ (t)) dt −

∫ 1

0
ω(Xt(σ (t)), Yt (σ (t))) dt. (3.13)

By (3.10),(3.11) and (3.13)

∆(s)−∆(0) = −s
∫ 1

0
ḟt (σ (t)) dt + O(s2) (modulo Z),

so

κ(ψs)− κ(ψ) = −2π isκ(ψ)
∫ 1

0
ḟt (σ (t)) dt + O(s2),

and finally(
d

ds
κ(ψs)

)∣∣∣∣
s=0

= −2π iκ(ψ)
∫ 1

0
ḟt (ψt (q)) dt. (3.14)

By L is denoted the space of C1-loops in Ham(M) based at id, i.e., L is the space of
isotopies ending at id. Given ψ ∈ L, let ψs a curve in L with ψ0 = ψ . For each s one has
the corresponding time-dependent Hamiltonian function f st . The tangent vector Z defined
by ψs is determined by the family of functions

ḟt := ∂

∂s

∣∣∣∣
s=0

f st ,

which in turn can be identified with the corresponding Hamiltoninan family of vector
fields.

On L we define the 1-form Ω as follows. Given Z ∈ TψL, determined by the family
{ḟt },

Ωψ(Z) :=
∫ 1

0
ḟt (ψt (q)) dt, (3.15)

where q is any point of M . The left-hand side in (3.14) is independent of the point q, and
so the right-hand side is also; therefore Ω is well-defined.
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If Ω = 0, then for any loop ψ in Ham(M) and any deformation ψs of ψ we have(
d

ds
κ(ψs)

)∣∣∣∣
s=0

= 0,

and conversely. In this case κ is invariant under homotopies.
The Lie algebra of the group Ham(M) consists of all smooth functions onM which satisfy

the normalization condition. The prequantization map P is a representation of this algebra,
as we said in Section 2. In general P is not the tangent representation of one representation
of H̃am(M), the universal cover of Ham(M). In the following we analyze this issue. An
element of H̃am(M) is a homotopy class of a curve in Ham(M) which starts at id, i.e., the
homotopy class [ψ] of a Hamiltonian isotopy ψ . When Ω vanishes Tψ depends only on
the homotopy class [ψ], this fact allows to construct a representation of H̃am(M) whose
tangent representation is P .

Proposition 14. If Ω = 0, then the prequantization map P extends to a representation of
H̃am(M).

Proof. Given the isotopy ψ , let {ψs} be a deformation of ψ . For each s the path ζ s in
Ham(M) defined as the usual product path ψs ·ψ−1 of the corresponding paths is a closed
isotopy. Since Ω = 0,(

d

ds
κ(ζ s)

)∣∣∣∣
s=0

= 0.

As

(Tψ−1 ◦ Tψs )(ρ) = Tψs ·ψ−1(ρ) = κ(ψs · ψ−1)ρ

for every ρ ∈ Γ (L), then

d

ds

∣∣∣∣
s=0

(Tψ−1Tψs )(ρ) =
(

d

ds
κ(ζ s)

)∣∣∣∣
s=0

ρ = 0.

So the transport Tψ alongψ depends only on the homotopy class [ψ], i.e., T is well-defined
on H̃am(M).

Ifψ andχ are isotopies, one can considerχ ◦ψ , the isotopy defined by (χ ◦ψ)t = χt ◦ψt .
On the other hand, one has the juxtaposition ψ�χ given by (ψ�χ)t = ψ2t for t ∈ [0, 0.5]
and (ψ�χ)t = χ2t−1 ◦ ψ1 for t ∈ [0.5, 1]. As [χ ◦ ψ] = [ψ�χ ] (see [8]), we have

T[χ ][ψ] = T[ψ�χ ] = T[χ ] ◦ T[ψ].

Hence T is a representation of H̃am(M) and, by construction, its tangent representation
is P . �

In a similar way one can prove the following theorem.

Theorem 15. Let (M,ω) be a compact, quantizable manifold. The following properties
are equivalent:
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1. The 1-form Ω vanishes.
2. For any simply connected Lagrangian submanifoldN ofM and every loopψt in Ham(M)

at id the Berry phase of the loop {ψt(N)}t of Lagrangian submanifolds depends only on
the homotopy class of ψt .

3. Given an arbitrary foliationF ofM and an arbitrary Hamiltonian isotopyψ , the natural
identifications of QF and Qψ1(F ) defined by Tψ and Tψ ′ are equal for all ψ ′ ∈ [ψ].

Proof. We assume (1). If ψs is a deformation of ψ ∈ L, as in the foregoing proposition
ψs · ψ−1 is a closed isotopy. By (1)(

dκ(ψs · ψ−1)

ds

)∣∣∣∣
s=0

= 0.

From (3.8) and Theorem 5 it follows property (2).
Conversely, let ψ be an element of L and ψs an arbitrary curve in L with ψ0 = ψ . This

curve defines a deformation of ψ . Let us take τ ∈ QF with τ|N �= 0, for N a leaf of a
Lagrangian foliation F . By (2) and Theorem 5 κ(ψ)τ|N = κ(ψs)τ|N for all s. Therefore
(dκ(ψs)/ds)|s=0 = 0, consequently Ωψ = 0. �

Next we study a particular case: the behavior of κ(ψ) under deformations consisting
of 1-parameter subgroups. Let us suppose that ψs for each s is a 1-periodic Hamiltonian
flow, then f st is independent of t and we put f st = f s. One defines the function ḟ by
ḟ (p) = ((d/ds)f s(p))|s=0. As {σ s(t)|t ∈ [0, 1]} is an integral curve for the Hamiltonian
function f s

f s(σ s(t)) = f s(q) = (f + sḟ )(q)+ O(s2) = f (q)+ sḟ (q)+ O(s2).

On the other hand

f s(σ s(t)) = (f + sḟ )(σ s(t))+ O(s2) = f (q)+ s(Yt (σ (t))(f )+ ḟ (σ (t)))+ O(s2).

Therefore

ḟ (q) = Yt (σ (t))(f )+ ḟ (σ (t)).

Now df = −ιXω, then∫ 1

0
ḟ (σ (t)) dt = ḟ (q)+

∫ 1

0
ω(X(σ(t)), Yt (σ (t))) dt.

The symplectomorphism δ := ψst ◦ψ−1
t applies the curve σ(t) into σ s(t). Hence δ(S) is a

surface whose boundary is σ s(t) and∫
Ss
ω =

∫
S

δ∗ω =
∫
S

ω. (3.16)

From (3.16), (3.10) and (3.11) it follows∫ 1

0
ω(X(σ(t)), Yt (σ (t))) dt = 0.
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From (3.14) it follows:

− 1

2π iκ(ψ)

(
d

ds
κ(ψs)

)∣∣∣∣
s=0

= ḟ (q). (3.17)

As the left-hand side in (3.17) is independent of the point q, it turns out that ḟ is constant
on M . The normalization condition of each f s implies

0 =
∫
M

f sωn =
∫
M

(f + sḟ )ωn + O(s2) = sḟ

∫
M

ωn + O(s2).

Hence ḟ ≡ 0, and by (3.14)(
d

ds
κ(ψs)

)∣∣∣∣
s=0

= 0.

One has

Theorem 16. κ is invariant under homotopies consisting of 1-parameter subgroups inM .

Corollary 17. Letψ andψ ′ be 1-periodic Hamiltonian flows generated by the Hamiltonian
functions f and f ′, respectively. If ψ and ψ ′ are homotopic in the space of 1-parameter
subgroups, then

f (p) = f ′(p′) (mod Z)

for p and p′ critical points of f and f ′, respectively.

Proof. It is a consequence of Theorem 16 and Corollary 12. �

4. A grading in π2(Ham(M))

We will prove in this Section that the 1-form Ω on L is closed. If φ := {φs} is a closed
curve inL, one can consider the map κ(φ−) : s ∈ S1 �→ κ(φs) ∈ U(1), its winding number
is

deg(κ(φ−)) =
∫
S1

1

2π iκ(φs)

dκ(φs)

ds
ds.

By (3.14) and (3.15) this winding number is equal to

−
∫
S1
Ωφs (φ̇

s)ds,

where φ̇s is the vector of TφsL defined by the curve {φs}s .
If φ and ξ are two homotopic loops inL, then there is a homotopy rφs such that 0φ

s = φs

and 1φ
s = ξ s . Therefore κ(rφ−) is a homotopy between the maps κ(φ−) and κ(ξ−), so

these maps have the same degree (see [4, p. 129]).
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If φ and ϕ are loops in L based at the same point and ζ = φ · ϕ is the path product, then
deg(κ(ζ−)) is equal to

1

2π i

(∫ 0.5

0

1

κ(φ2s)

dκ(φ2s)

ds
ds +

∫ 1

0.5

1

κ(ϕ2s−1)

dκ(ϕ2s−1)

ds
ds

)
,

and this expression is equal to deg(κ(φ−)) + deg(κ(ϕ−)). Thus, we have the following
theorem.

Theorem 18. Ω defines an element of H 1(L,Z). Moreover, if φ is a closed curve on L
then −Ω([φ]) is the degree of the map κ(φ−).

We denote by c the loop in Ham(M) defined by c(s) = id for all s. Since
π1(L, c) = π2(Ham(M), id), the form Ω defines a degree on π2(Ham(M), id). Given
[φ] ∈ π2(Ham(M), id)

Deg([φ]) := Ω([φ]) = −deg(κ(φ−)). (4.1)

As Deg is a homomorphism, this grading on π2(Ham(M)) is compatible with the group
structure.

If Ω is exact, then Deg = 0. In this case there is a potential map H : L→ R such that,
if {νs}s is a curve in L starting at c ∈ L

H(νs) =
∫ s

0
Ωνa (ν̇

a) da = − 1

2π i

∫ s

0

1

κ(νa)

dκ(νa)

da
da.

So

dH(νs)

ds
= − 1

2π iκ(νs)

dκ(νs)

ds
.

By (3.6) κ(c) = 1, so κ(νs) = exp(−2π iH(νs)). Hence for everyψ ∈ L that can be joined
with c by a path, we have κ(ψ) = exp(−2π iH(ψ)). A similar expression holds in each
connected component ofL. ThusH is a lifting of the action integral functionA : L→ R/Z

to an R-valued function.
Conversely, if there is a lifting of A to an R-valued function, then Deg = 0, i.e., Ω is

exact. In short, it is dealt in the following proposition.

Proposition 19. The class [Ω] ∈ H 1(L,Z) is the obstruction to existence of a lifting ofA
to an R-valued function.

A generic element ofπ2(Ham(M), id) is given by a mapφ = (φst ) from I 2 into Ham(M),
such that for each sφs = {φst }t is a Hamiltonian isotopy ending at id, defined by the
normalized time-dependent Hamiltonian f st . One can also consider a family of particular
elements in π2(Ham(M), id), those χ such that for each s, χs is the Hamiltonian flow
associated to a Hamiltonian function. One has the following result.
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Proposition 20. If [φ] = [χ ] ∈ π2(Ham(M), id), then∫ 1

0

∫ 1

0

(
∂f st

∂s

)
(φst (q)) dt ds = 0

for every q ∈ M .

Proof.

Ω([χ ]) = Ω([φ]) =
∫ 1

0
Ωφs (φ̇

s) ds. (4.2)

By (3.15)

Ωφs (φ̇
s) =

∫ 1

0

(
∂f st

∂s

)
(φst (q)) dt (4.3)

for every q ∈ M .
On the other hand, κ(χs) is independent of s by Theorem 16. So the map κ(χ−) has

degree 0. The proposition follows from Theorem 18, (4.2) and (4.3). �

5. Example: coadjoint orbits of SU(2)

We will check the above results whenM is a coadjoint orbit [6] of the group SU(2). Let
η be the element of su(2)∗

η :

(
ai w

−w̄ −ai

)
∈ su(2) → ka ∈ R,

where k is a non-zero real number. The subgroup of isotropyGη of η is the subgroupU(1) of
SU(2). So the coadjoint orbit Oη of η can be identified with SU(2)/U(1) = S2. If µ ∈ Oη
then µ = g · η with

g =
(
x y

−ȳ x̄

)
∈ SU(2). (5.1)

If we put

x = cos( 1
2θ) exp(iφ1), y = sin( 1

2θ) exp(−iφ2) with 0 ≤ θ ≤ π, (5.2)

then the point inS2 corresponding toµ ∈ Oη through the diffeomorphismOη � SU(2)/U(1) �
S2 has the spherical coordinates (θ, φ = φ1 − φ2).

On the other hand, su(2) = RA⊕ RB ⊕ RZ with

A =
(

0 i
i 0

)
, B =

(
0 1
−1 0

)
, Z =

(
i 0
0 −i

)
.

The invariant vector fields XA,XB generated by A,B ∈ su(2) can be expressed in terms
of the fields ∂/∂θ, ∂/∂φ. Given µ ∈ Oη, XB(µ) is defined by the curve etBµ. If µ = gη,
with g as above, then etBg is the element of SU(2) determined by the pair

(x′, y′) = (x cos t − ȳ sin t, y cos t + x̄ sin t).
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An easy but tedious calculation shows that

(x′, y′) = (cos( 1
2θ

′) eiφ′
1 , sin( 1

2θ
′) e−iφ′

2)+ O(t2)

with θ ′ = θ + 2t cosφ, φ′
1 = φ1 + t tan( 1

2θ) sin φ, φ′
2 = φ2 + t cot( 1

2θ) sin φ. Therefore

XB(θ, φ) = 2 cosφ
∂

∂θ
− 2 cot θ sin φ

∂

∂φ
. (5.3)

Similarly,

XA(θ, φ) = 2 sin φ
∂

∂θ
+ 2 cot θ cosφ

∂

∂φ
. (5.4)

The symplectic structure onOη is defined by the formω, whose action on invariant vector
fields is

ωµ(XC(µ),XD(µ)) = µ([C,D]).

ω can also be expressed in the spherical coordinates. With the above notations

ωµ(XA,XB) = η(g−1[A,B]g) = −2k(|x|2 − |y|2) = −2k cos θ.

Using (5.3) and (5.4) a simple calculation gives

ω = 1
2k sin θ dθ ∧ dφ. (5.5)

Given C ∈ su(2), the function hC on Oη defined by hC(µ) = µ(C) satisfies ω(XC, .) =
dhC . In spherical coordinates

hA(θ, φ) = −k sin θ cosφ, hB(θ, φ) = k sin θ sin φ. (5.6)

Henceforth, we assume that k = n/2π with n ∈ Z. Then, the orbit Oη possesses an
invariant prequantization (see [7]).

We can consider the family {ψt } of symplectomorphisms of Oη defined by ψt(µ) :=
etA · µ. As

etA =
(

cos t i sin t

i sin t cos t

)
, (5.7)

hence ψπ : S2 → S2 is the identity, and ψ = {ψt |t ∈ [0, π ]} is a loop in the group of
Ham(Oη).

If one takes the north pole p(θ = 0, φ = 0), the curve ψt(p) is the path obtained
as product of the paths defined by the meridians φ = π/2 and φ = 3π/2. So by (5.6)
hA(ψt (p)) = 0, and

S = {(θ, φ)|π/2 ≤ φ ≤ 3π/2, θ ∈ [0, π ]}
oriented with dθ ∧ dφ is an oriented surface whose boundary is the curve ψt(p). By (5.5)∫
S
ω = kπ , and from (3.6) we obtain κp(ψ) = (−1)n.
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We could calculate κq(ψ) for q(θ = π/2, φ = 0). Now ψt(q) = q for all t , hence the
integral of ω in (3.6) vanishes. hA(q) = −n/2π , consequently −∫ π0 ft (ψt (q)) = − 1

2n, and
κq(ψ) = (−1)n.

Let us consider the point r = (π/2, π/2) ∈ S2, according to (5.2) this point can be
represented by the element of g ∈ SU(2) defined by x = 2−1/2i, y = 2−1/2. Denoting by
(θ ′, φ′) the spherical coordinates of ψt(r), from (5.7) one deduces

eiφ′
cos( 1

2θ
′) = i√

2
(cos t − sin t), sin( 1

2θ
′) = 1√

2
(cos t + sin t).

Hence θ ′ = 2t + π/2, φ′ = π/2 when t ∈ [0, π/4], etc., i.e., {ψt(r)} is the union of the
meridians φ = π/2 and φ = 3π/2. So hA(ψt (r)) = 0. On the other hand∫ π

0

∫ 3π/2

π/2

n

4π
sin θ dθ ∧ dφ = n

2
.

So κr(ψ) = (−1)n.
The equalities κp(ψ) = κq(ψ) = κr(ψ) can also be considered as a checking of

Theorem 10.
We will determine κ(χ), when χt is the symplectomorphism of S2 given by χt (q) =

et (aA+bB)q, where a, b ∈ R. For t ≥ 0 we put c = t (b + ai), so

t (aA + bB) =
(

0 c

−c̄ 0

)
.

If we define ε := c/|c|, it is easy to deduce

et (aA+bB) =
(

cos |c| ε sin |c|
−ε̄ sin |c| cos |c|

)
(5.8)

For t1 = π/
√
a2 + b2 the Hamiltonian symplectomorphism χt1 = id, so {χt |t ∈ [0, t1]}

is a loop in Ham(S2). From now on we assume
√
a2 + b2 = 1, then χπ = id.

Let p be the north pole, then χt (p) is the point which corresponds to the pair

(x = cos t, y = ε sin t) (5.9)

in the notation (5.1). We put ε = eiα , from (5.2) and (5.9) it follows that the spherical
coordinates of χt (p) are (2t, α) for t ∈ [0, π/2].

Similarly, when t runs on [π/2, π ] the point χt (p) runs on the meridian φ = π +α from
θ = π to θ = 0, i.e., χt (p) = (2π − 2t, π + α).

As haA+bB = ahA + bhB and ε = cosα + i sin α, by (5.6)

haA+bB(θ, φ) = k sin θ sin(φ − α).

Taking into account the spherical coordinates of χt (p) determined above, one deduces
haA+bB(χt (p)) = 0 for every t ∈ [0, π ]. Thus κ(χ) = exp(2π i

∫
S
ω), where S is the

hemisphere limited by the meridian φ = α and φ = π + α. Therefore κ(χ) = (−1)n. In
summary it can be given as the following theorem.
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Theorem 21. Let η be the element of su(2)∗ defined by η

(
ai w

−w̄ −ai

)
= (n/2π)a with

n ∈ Z. Ifχ is a loop in Ham(Oη)which is a 1-parameter subgroup generated by an invariant
vector field, then κ(χ) = (−1)n.

The vector aA + bB ∈ su(2) with a2 + b2 = 1 can be deformed by means of a rotation
into a′A + b′B, if (a′)2 + (b′)2 = 1. If we denote χ ′

t := exp(t (a′A + b′B)), by The-
orem 16 κ(χ) = κ(χ ′). Therefore, Theorem 21 can also be considered as a checking of
Theorem 16.
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